Hook Formulas for Skew Shapes
نویسندگان
چکیده
The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over excited diagrams of products of hook-lengths. We give an algebraic and a combinatorial proof of Naruse’s formula, by using factorial Schur functions and a generalization of the Hillman-Grassl correspondence, respectively. Our main results are two q-analogues of Naruse’s formula for the skew Schur functions and for counting reverse plane partitions of skew shapes. We also apply our results to border strip shapes and their generalizations. In particular, we obtain new summation formulas for the number of alternating permutations in terms of certain Dyck paths, and their q-analogues.
منابع مشابه
Hook Formulas for Skew Shapes II. Combinatorial Proofs and Enumerative Applications
The Naruse hook-length formula is a recent general formula for the number of standard Young tableaux of skew shapes, given as a positive sum over excited diagrams of products of hook-lengths. In [MPP1] we gave two different q-analogues of Naruse’s formula: for the skew Schur functions, and for counting reverse plane partitions of skew shapes. In this paper we give an elementary proof of Naruse’...
متن کاملHook formulas for skew shapes I. q-analogues and bijections
The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over excited diagrams of products of hook-lengths. We give an algebraic and a combinatorial proof of Naruse’s formula, by using factorial Schur functio...
متن کاملHomotopies for Resolutions of Skew-hook Shapes
We present characteristic-free resolutions and splitting homotopies for the Weyl modules associated to skew-hook shapes. Résumé. Nous présentons des résolutions en caractéristique-libre, et des homotopies associées aux formes du type “skew-hook”.
متن کاملThe Kronecker Product of Schur Functions Indexed by Two-Row Shapes or Hook Shapes
The Kronecker product of two Schur functions sμ and sν , denoted by sμ ∗sν, is the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group corresponding to the partitions μ and ν. The coefficient of sλ in this product is denoted by γ λ μν , and corresponds to the multiplicity of the irreducible character χ in χχ . We use Sergeev’s Formula for a S...
متن کاملEvaluating the Numbers of some Skew Standard Young Tableaux of Truncated Shapes
In this paper the number of standard Young tableaux (SYT) is evaluated by the methods of multiple integrals and combinatorial summations. We obtain the product formulas of the numbers of skew SYT of certain truncated shapes, including the skew SYT ((n + k)r+1, nm−1)/(n − 1)r truncated by a rectangle or nearly a rectangle, the skew SYT of truncated shape ((n+ 1)3, nm−2)/(n− 2)\ (22), and the SYT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015